Package: cases 0.2.0
Max Westphal
cases: Stratified Evaluation of Subgroup Classification Accuracy
Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity (Westphal M, Zapf A. Statistical inference for diagnostic test accuracy studies with multiple comparisons. Statistical Methods in Medical Research. 2024;0(0). <doi:10.1177/09622802241236933>).
Authors:
cases_0.2.0.tar.gz
cases_0.2.0.zip(r-4.5)cases_0.2.0.zip(r-4.4)cases_0.2.0.zip(r-4.3)
cases_0.2.0.tgz(r-4.4-any)cases_0.2.0.tgz(r-4.3-any)
cases_0.2.0.tar.gz(r-4.5-noble)cases_0.2.0.tar.gz(r-4.4-noble)
cases_0.2.0.tgz(r-4.4-emscripten)cases_0.2.0.tgz(r-4.3-emscripten)
cases.pdf |cases.html✨
cases/json (API)
NEWS
# Install 'cases' in R: |
install.packages('cases', repos = c('https://maxwestphal.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/maxwestphal/cases/issues
- data_wdbc - Breast Cancer Wisconsin (Diagnostic) Data Set
Last updated 4 months agofrom:feba9a288f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | OK | Nov 15 2024 |
R-4.5-linux | OK | Nov 15 2024 |
R-4.4-win | OK | Nov 15 2024 |
R-4.4-mac | OK | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports:%>%categorizecomparedefine_contrastdraw_datadraw_data_lfcdraw_data_prbdraw_data_rocevaluategenerate_instance_lfcgenerate_instance_rocprocess_instancevisualize
Dependencies:ADGofTestbindatabootclassclicodetoolscolorspacecopulacorrplotdplyre1071extraDistrfansifarvergenericsggplot2gluegslgtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmultcompmunsellmvtnormnlmenumDerivpcaPPpillarpkgconfigproxypsplineR6RColorBrewerRcpprlangsandwichscalesstabledistsurvivalTH.datatibbletidyselectutf8vctrsviridisLitewithrzoo
R package cases: overview
Rendered frompackage_overview.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-07-17
Started: 2022-08-06
Real-world example: biomarker assessment and prediction model evaluation
Rendered fromexample_wdbc.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-07-17
Started: 2022-08-06
Readme and manuals
Help Manual
Help page | Topics |
---|---|
'cases' package | cases-package cases |
Categorize continuous values | categorize |
Compare predictions and labels | compare |
Create an AR(1) correlation matrix | cormat_ar1 |
Create an equicorrelation matrix | cormat_equi |
Breast Cancer Wisconsin (Diagnostic) Data Set | data_wdbc |
Define a contrast (matrix) to specify exact hypothesis system | define_contrast |
Generate binary data | draw_data |
Generate binary data (LFC model) | draw_data_lfc |
Sample binary data (single sample) | draw_data_prb |
Generate binary data (ROC model) | draw_data_roc |
Evaluate the accuracy of multiple (candidate) classifiers in several subgroups | evaluate |
Generate data sets under least favorable parameter configurations | generate_instance_lfc |
Generate data sets under realistic parameter configurations | generate_instance_roc |
Analyze simulated synthetic datasets. | process_instance |
Visualize evaluation results | visualize |